

A study of clinical profile and factors associated with pre-eclampsia at tertiary health care center

Vishwanath Iraba Dange^{1*}, Bhagwan Mahadev Patil²

¹Junior Resident, ²Associate Professor, Department of OBGY, Bharati Hospital and Medical College, Sangli, Maharashtra, INDIA.

Email: dange.vishu007@gmail.com

Abstract

Background: Pre eclampsia is one of the important factor contributing to maternal mortality. Early detection and treatment will be helpful in reducing the disease. **Aim and objective:** to study the clinical profile and risk factors associated with preeclampsia at a tertiary health care centre. **Methodology:** Total 200 patients were studied in two groups. First group was women who developed preeclampsia and group two was women used as controls were without preeclampsia. Data collected with pre tested questionnaire. **Results and discussion:** Age<20 years, low income, early menarche ,IO relative marriage, time b/w marriage and first conception, Gestational age> 30 weeks, h/o preeclampsia, family h/o preeclampsia, hypertension were significant risk factors for preeclampsia.

Key Word: pre-eclampsia.

*Address for Correspondence:

Dr. Vishwanath Iraba Dange, Junior Resident, Department of OBGY, Bharati Hospital and Medical College, Sangli, Maharashtra, INDIA.

Email: dange.vishu007@gmail.com

Received Date: 21/06/2018 Revised Date: 10/07/2018 Accepted Date: 17/08/2018

DOI: <https://doi.org/10.26611/1012725>

Access this article online

Quick Response Code:

Website:
www.medpulse.in

Accessed Date:
15 August 2018

and Hepatic failure, eclamptic seizures, stroke, Placental abruption, HELLP syndrome failure, DIC, Multiple organ failures and Maternal death.^{3,4} Fetal complications include Fetal distress, Intrauterine growth retardation, Preterm birth, Stillbirth, Perinatal death and Neonatal asphyxia.^{5,6} This study was conducted to study the clinical profile and risk factors associated with preeclampsia at a tertiary health care centre.

MATERIAL AND METHOD

A case control study was carried out in a tertiary health care center to find out factors associated with preeclampsia. Cases and control were selected in study population. Inclusion criteria: Cases were pregnant women diagnosed with preeclampsia. Controls were pregnant women without preeclampsia. Exclusion criteria¹. those with renal disease². Those with chronic hypertension and cardio vascular diseases³. Those not willing to participate Pre-eclampsia was defined as a pregnancy induced hypertension associated with proteinuria. Pregnancy induced hypertension was defined as new hypertension with blood pressure of 140 mmHg systolic or diastolic pressure of 90 mmHg or greater arising after 20wk of gestation in a woman who was normotensive before 20wk of gestation. Proteinuria was defined as excretion of 300mg or more of protein in 24h urine sample. Cases were selected from pre-eclamptic

INTRODUCTION

Preeclampsia has remained a significant public health threat in both developed and developing countries contributing to maternal and perinatal morbidity and mortality globally¹.Globally, over half a million women die each year of pregnancy related causes and 99% of these deaths occur in developing countries². Preeclampsia typically starts after 20th week of pregnancy and is related to increased blood pressure (BP \geq 140/90 mmHg) and protein in mother's urine (urinary albumin protein \geq 300 mg/24 h). The clinical spectrum of preeclampsia ranges from mild to severe. Pre-eclampsia has been associated with increased risk of adverse fetal, neonatal and maternal outcomes including Antepartum and Postpartum haemorrhage, Acute renal

How to cite this article: Vishwanath Iraba Dange, Bhagwan Mahadev Patil. A study of clinical profile and factors associated with pre-eclampsia at tertiary health care center. *MedPulse International Journal of Gynaecology*. August 2018; 7(2): 60-63.

<http://medpulse.in/Gynaecology/index.php>

ward and controls from outpatient section of Obstetrics and Gynaecology department. Total 50 cases and 50 controls were selected. Study was approved by ethical committee. A written valid consent was taken from patients after explaining study to them. The data was

collected using a pre-tested questionnaire. Data collection included socio-demographic data and clinical data including detailed history. Data analysis was done with appropriate statistical tests.

RESULTS

Table 1: Comparison between cases and controls according to socio demographic characters

Sr no	Sociodemographic characters	Cases	Controls	Odds ratio	P value
1	Age	<20 years	56(56%)	25(25%)	3.81 <0.05
2		>20 years	44(44%)	75(75%)	
3	Education	Illiterate	22(22%)	19(19%)	1.2 >0.05
4		Literate	78(78%)	81(81%)	
5	Occupation	Unemployed	83(83%)	81(81%)	1.1 >0.05
6		Employed	17(17%)	19(19%)	
7	Monthly income	< 5000	80(80%)	37(37%)	6.8 <0.05
8		>5000	20(20%)	63(63%)	
9	Family type	Nuclear	18(18%)	72(72%)	0.08 <0.05
10		Joint	82(82%)	28(28%)	

Table 2: Comparison between cases and controls according to maternal characters

Sr no	Maternal characters	Cases	Controls	Odds ratio	P value
1	Age at menarche	<12 years	83(83%)	28(28%)	12.55 <0.05
2		>12 years	17(17%)	72(72%)	
3	Marriage with I ⁰ relative	Yes	78(78%)	20(20%)	14.18 <0.05
4		No	22(22%)	80(80%)	
5	Age at marriage	< 18 years	20(20%)	21(21%)	3.7 <0.05
6		>18 years	80(80%)	79(79%)	
7	Time period between marriage and first conception	<12 months	81(81%)	24(24%)	13.5 <0.05
8		>12 months	19(19%)	76(76%)	
9	Gestation age	20 -30 weeks	67(67%)	03(3%)	44.82 <0.05
10		>30 weeks	33(33%)	97(97%)	
11	Family H/O PIH	Yes	61(61%)	04(4%)	37.53 <0.05
12		No	39(39%)	96(96%)	
13	H/O PIH	Yes	60	04	36 <0.05
14		No	40	96	

In table 1, mean age of cases (23.31 years) was less than the controls (25.71 years). Pregnant women with age less than 20 years had 3.8 times more risk of developing preeclampsia than more than 20 years. Proportion of literate in cases was 78% and among controls was 81%. There was less difference in proportion of illiterate among cases (22%) and controls (19%). Proportion of employed patients was similar in both cases (17%) and controls (19%). Proportion of family income less than 5000 Rs was more in cases (80%) than controls (37%). This difference was statistically significant ($p <0.05$). Among cases 82% patients belonged to joint family and 18% belonged to nuclear family. Among controls 28% patients belonged to joint family and 72% belonged to nuclear family (table1). Mean systolic blood pressure was 150 ± 23.6 mm Hg in cases and it was 123 ± 18.6 mm Hg in

controls. This difference was statistically significant ($p <0.05$) similarly Mean diastolic blood pressure was 90 ± 12.6 mm Hg in cases and it was 76 ± 15.9 mm Hg in controls. This difference was statistically significant. ($p <0.05$)

Table 2 showed comparison between cases and controls according to maternal characters. Women who had menarche at age of less than 12 years were having 12.55 times more chances of developing pre-eclampsia than to those who had menarche after 12 years of age. Women who married their first degree relative were at 14.18 times more risk of developing pre-eclampsia compared to those who did not marry their first degree relative. Women who married before age of 18 years were at 3.7 times more risk of developing pre-eclampsia compared to those who married after 18 years. Women who had their first

conception within one year of their marriage were at risk of developing pre-eclampsia more than 13 times compared to those who had their first conception after one year of marriage. Gestational period of more than 30 weeks was significantly associated with pre-eclampsia compared to gestational period between 20–30 weeks. Family history of pre-eclampsia, diabetes and hypertension were significantly associated with pre-eclampsia. The pregnant women with family history of PIH were having 37 times greater risk being preeclamptic than those without such history. odds of having preeclampsia as compared to those who had no such history. Women with previous history of preeclampsia had greater odds than without such history. (OR= 36)

DISCUSSION

Pregnant women with age less than 20 years had 3.8 times more risk of developing preeclampsia than more than 20 years. This may be due to the failure of the normal invasion of trophoblastic cells leads to mal adaptation of the spiral arterioles, which are related to the causation of pre-eclampsia⁷. Some of the studies showed that advanced maternal age is contributing factor for development of preeclampsia.^{8,9} Lower socioeconomic status was significant risk factor in development of preeclampsia in our study. Similar findings were observed in Najman JM *et al*¹⁰ and Ceron-Mireles P *et al*¹¹. women with early menarche were having 12.55 times more chances of developing pre-eclampsia than to those with late menarche. Similar findings were observed in Dejener F *et al*.¹² Women who married their first degree relative were at 14.18 times more risk of developing pre-eclampsia compared to those who did not marry their first degree relative. Similarly ramesh K *et al* observed marriage with first degree relative was important risk factor in preeclampsia¹³. In our study Women who had their first conception within one year of their marriage were at risk of developing pre-eclampsia more than 13 times compared to those who had their first conception after one year of marriage. Similar findings were observed in previous studies.¹³ Gestational age of more than 30 weeks was more significant in developing preeclampsia. The pregnant women with family history of PIH were having 37 times greater risk being preeclamptic than those without such history. Similar results were observed in Kumar S *et al*¹⁴, Kirsten Duckitt *et al*.⁹ and Mesviel P *et al*.¹⁵ Women with previous history of preeclampsia had greater odds than without such history. (OR= 36) similar findings were observed in Laminapee *et al*⁸ and Conde *et al*.¹⁶

CONCLUSION

Age<20 years, low income, early menarche,¹⁰ relative marriage, time b/w marriage and first conception, Gestational age> 30 weeks, h/o preeclampsia, family h/o preeclampsia, hypertension were risk factors for preeclampsia.

REFERENCES

1. Duley L: Maternal mortality associated with hypertensive disorders of pregnancy in Africa, Asia, Latin America and the Caribbean. *Br J Obstet Gynaecol* 1992; 99:547-553.
2. Mahler H. The safe motherhood initiative: a call to action. *Lancet*. 1987; 1(8534):668-70.
3. North RA, Mc Cowan LM, Dekker GA, Poston L, Chan EH, Stewart AW, et al. Clinical risk prediction for pre-eclampsia in nulliparous women: development of model in international prospective cohort. *BMJ*. 2011; 342: d1875.
4. Ye C, Ruan Y, Zou L, Li G, Li C, Chen Y, et al. The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. *PLoS one*. 2014; 9(6):e100180.
5. Kayode O, Osungbade and Olusimbo K. Ige. Public Health Perspectives of Preecclampsia in Developing Countries: Implication for Health System Strengthening. *Hindawi Publishing Corporation Journal of Pregnancy*. 2011; Volume 2011, 6.
6. Roberts CL, Ford JB, Algert CS, Antonsen S, Chalmers J, Cnattingius S, et al. Population-based trends in pregnancy hypertension and pre-eclampsia: an international comparative study. *BMJ open*. 2011;1(1)
7. Walker JJ. Severe pre-eclampsia and eclampsia. *Baillieres Best Pract Res Clin Obstet Gynaecol*. 2000; 14(1):57-71.
8. Lamminpää R, Vehviläinen-Julkunen K, Gissler M, Heinonen S. Preeclampsia complicated by advanced maternal age: a registry-based study on primiparous women in Finland 1997-2008. *BMC Pregnancy Childbirth*. 2012; 11: 12: 7.
9. Kirsten Duckitt, Deborah Harrington. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. *BMJ*. 2005; 330: 565.
10. Najman JM, Morrison J, Williams GM, et al. Unemployment and reproductive outcome. An Australian study. *Br J Obstet Gynaecol*. 1989; 96: 308-13.
11. Ceron-Mireles P, Harlow SD, Sanchez-Carrillo CI, Nunez RM. Risk factors for pre - eclampsia/eclampsia among working women in Mexico City. *Paediatric Perinatal Epidemiology*. 2001; 15: 40-46.
12. Dejene F, Abetew, Daniel A, Enquobahrie, Michal Dishi, Carole B, Rudra. Age at Menarche, Menstrual Characteristics, and Risk of Preeclampsia. *ISRN Obstetrics and Gynecology*. 2011.
13. Ramesh.K, Sangeetha Gandhi, Vishwas Rao. Socio-Demographic and Other Risk Factors of Pre Eclampsia at a Tertiary Care Hospital, Karnataka: Case Control Study. *Journal of Clinical and Diagnostic Research*. 2014 Sep, Vol-8(9): JC01-JC04
14. Kumar S Ganesh, B Unnikrishnan, K Nagaraj, and S Jayaram. Determinants of Pre-eclampsia: A Case-control

Study in a District Hospital in South. Indian J Community Med. 2010; 35(4):502–05.

15. Marviel P, Touzart L, Deslandes V, et al. Risk factors of pre - eclampsia in a single pregnancy. J Gynecol Obstet BioI Reprod Paris. 2008; 37: 477-82.

16. Conde-Agudelo A, Belizan, JM. Risk factors for pre-eclampsia in a large cohort of Latin American and Caribbean women. Bjog. 2000; 107: 75-83.

Source of Support: None Declared

Conflict of Interest: None Declared

