INTRODUCTION

Introduction of sharp-edge optic intraocular lenses (IOL) and the development of the modern phacoemulsification technique have resulted in reduced rates of posterior capsule opacification (PCO). Posterior capsule opacification is the most common complication of cataract surgery and results from the proliferation and migration of residual lenticular epithelial cells. PCO decreases visual acuity and contrast sensitivity leading to disability as a result of glare. Neodymium:yttrium-aluminum-garnet (Nd: YAG) laser capsulotomy has utility in the treatment of PCO. The purpose of this study was to evaluate the influence of size and shape of Neodymium: Yttrium Aluminum Garnet (Nd: YAG) laser capsulotomy on visual acuity and refraction. No significant change in SE following capsulotomy was observed in any group. BCVA significantly improved in all groups following capsulotomy. In conclusion, our study shows that Cruciate shape capsulotomy with an opening of 3.5 mm or less provides the greatest improvement in visual function following Nd: YAG capsulotomy in patients who have had uncomplicated cataract extraction surgery.

Key Words: Nd: YAG.

Access this article online

Quick Response Code:
Website: www.medpulse.in
DOI: 08 January 2017

The influence of size and shape of Nd: YAG capsulotomy on visual acuity and refraction

Mona Sune¹, Virendra Roda²*

Department of Ophthalmology, Jawaharlal Nehru Medical College, Sawangi, (Meghe), Wardha, Maharashtra, INDIA.

Email: virendra.roda424@gmail.com

Abstract

Introduction of sharp-edge optic intraocular lenses (IOL) and the development of the modern phacoemulsification technique have resulted in reduced rates of posterior capsule opacification (PCO). Posterior capsule opacification is the most common complication of cataract surgery and results from the proliferation and migration of residual lenticular epithelial cells. PCO decreases visual acuity and contrast sensitivity leading to disability as a result of glare. Neodymium: yttrium-aluminum-garnet (Nd: YAG) laser capsulotomy has utility in the treatment of PCO. The purpose of this study was to evaluate the influence of size and shape of Neodymium: Yttrium Aluminum Garnet (Nd: YAG) laser capsulotomy on visual acuity and refraction. No significant change in SE following capsulotomy was observed in any group. BCVA significantly improved in all groups following capsulotomy. In conclusion, our study shows that Cruciate shape capsulotomy with an opening of 3.5 mm or less provides the greatest improvement in visual function following Nd: YAG capsulotomy in patients who have had uncomplicated cataract extraction surgery.

Key Words: Nd: YAG.
amount of aqueous particles following Nd: YAG laser capsulotomy. Ari et al. underlined that the severity and duration of increased IOP is less when a total energy level less than 80 mj is used. In this study, we evaluated the effect of Nd: YAG capsulotomy size and shape on visual outcomes.

Study Design
Hospital based observational study with a quantitative components.

Study Population
With the conventional sampling method 20 PCO patients was examined to collect the data.

MATERIALS AND METHOD

Inclusion Criteria
Patients with PCO following cataract extraction with posterior chamber intraocular lens implantation complaining of dimision of vision

Exclusion Criteria
1. Patient with anterior segment abnormalities and posterior segment abnormalities such as with corneal opacities, glaucoma, retinopathy, maculopathy, and optic neuropathy and patients with diabetes mellitus.
2. Patients with IOL implantation other than posterior chamber IOL.
3. Patients with high myopic and hyperopic refractive errors greater than −6.0 or +6.0 diopters.

The study was adhered to the tenets of the Declaration of Helsinki, and The study was carried out in Acharya Vinoba Bhave Rural Hospital, and it was approved by an institutional ethical committee of DMIMSU. Informed consent was obtained from all subjects after the nature and possible consequences of the study were explained to them. All patients were examined before and after Nd: YAG laser Capsulotomy. All patients were undergone a complete ocular examination on all visits, including best-corrected visual acuity (BCVA) in log MAR, subjective refraction, slit-lamp, IOP measurement, and posterior segment examination. The IOP was recorded by NCT. The Optical Coherence Tomography (OCT) was done for macular thickness measurements. All patients were treated with Nd: YAG laser capsulotomy at a single center by a single surgeon. Tropicamide 1% and phenylephrine 2.5% was used for pupillary dilatation prior to procedure. After capsulotomy, E/D Timolol 5% BD for 15 days, E/D Flubiprofen TDS for 15 days, Tab Acetazolamide SR OD for 3 days were prescribed. Comparison of, best corrected visual acuity, refraction, IOP, before Nd: YAG laser capsulotomy and after Nd: YAG laser capsulotomy was done. All patients were divided into 4 groups, patients irrespective of their age and sex and visual acuity and refractive status. Group 1-Cruciate shape capsulotomies with openings of less than or equal to 3.5mm.Group 2-Circular shape capsulotomies with openings of less than or equal to 3.5 mm. Group 3-Cruciate shape capsulotomies with openings of greater than 3.5 mm. Group 4-Circular shape capsulotomies with openings of greater than 3.5 mm.

OBSERVATION AND RESULTS
31 eyes of 31 patients were included in this study. 17 patients were male and 14 were female.

| Table 1: Number of male and female patients involved in study |
|---------------------------------|-----------------|
| No Of Patients |
| Male | 17 |
| Female | 14 |

The interval between surgery and Nd: YAG laser Capsulotomy was approx 2-8 years. No significant difference in the interval between surgery and Nd: YAG laser Capsulotomy was observed between groups. It was observed that in younger patient there was early manifestation of PCO in comparison to elders.

Spherical Equivalent
The mean pre-procedural SE was -2.40 in Group 1, -2.89 diopter in Group 2, -2.17 diopter in Group 3, and -3.22 diopter in Group 4. The mean post-procedural SE was -1.75 diopter in Group 1, -2.28 diopter in Group 2, -1.75 diopter in Group 3, and -2.44 diopter in Group 4. No significant change in SE following capsulotomy was observed in any group.

| Table 2: Comparison between pre procedural and post procedural spherical equivalent |
|-----------------------------------|-----------------|
| Pre procedure spherical equivalent | Post procedure spherical equivalent |
| Cruciate with less than or equal to 3.5mm | -2.40 | -1.75 |
| Circular with less than or equal to 3.5mm | -2.89 | -2.28 |
| Cruciate with more than 3.5mm | -2.17 | -1.75 |
| Circular with more than 3.5mm | -3.22 | -2.44 |
The mean pre-procedural BCVA was 0.66 logMAR units in Group 1, 0.69 logMAR units in Group 2, 0.62 logMAR units in Group 3, and 0.66 logMAR units in Group 4. The mean post-procedural BCVA was 0.04 logMAR units in Group 1, 0.07 logMAR units in Group 2, 0.07 logMAR units in Group 3, and 0.08 logMAR units in Group 4. BCVA significantly improved in all groups following capsulotomy specially in group 1.

Table 3: Comparison between pre-procedural and post-procedural BCVA in logMAR

<table>
<thead>
<tr>
<th></th>
<th>Pre procedure BCVA in logMAR</th>
<th>Post procedure BCVA in logMAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cruciate with less than or equal to 3.5mm</td>
<td>0.66</td>
<td>0.04</td>
</tr>
<tr>
<td>Circular with less than or equal to 3.5mm</td>
<td>0.69</td>
<td>0.07</td>
</tr>
<tr>
<td>Cruciate with more than 3.5mm</td>
<td>0.62</td>
<td>0.07</td>
</tr>
<tr>
<td>Circular with more than 3.5mm</td>
<td>0.66</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Initially slight raise in intraocular pressure was noticed which reduced on subsequent follow up.

DISCUSSION

Posterior capsule opacification is the most common delayed complication of cataract surgery. The incidence of PCO was reported to be 20.7% at two years and 28.5% at 5 years after cataract surgery. Although Nd: YAG laser capsulotomy has been found to be safe and effective, the procedure has potential to affect the position of the IOL. Findl et al. reported that a subtle posterior shift of the posterior chamber IOL can occur but Thornval and Naeser failed to observe this effect. In another study the change in SE after Nd: YAG laser capsulotomy was statistically insignificant. Theoretically, posterior movement of the IOL may cause a hyperopic shift. In current study, we found a hyperopic shift in both small and large capsulotomy groups. The hyperopic shift was higher in large capsulotomy group 3 and 4 than in small capsulotomy group 1 and 2. As per our study we found in our study in smaller Capsulotomy provides improvement in visual acuity with minimum refractive changes as seen in smaller capsulotomy openings limit visual acuity by diffraction and result in light passing through the unopened region of the capsule being scattered causing glare and decreasing contrast sensitivity. Capsulotomy opening should therefore be equal to, or larger than, the size of pupil in scotopic conditions. However, capsulotomy openings should be large enough to ensure good visualisation of the peripheral fundus. In larger Capsulotomy opening improvement in visual acuity was comparatively low with maximum refractive changes than in smaller Capsulotomy opening as seen in larger capsulotomy openings may increase risk of cystoid macular edema, vitreous prolapse, and retinal detachment[30]or cause posterior IOL dislocation leading to hyperopia. In addition, a higher amount of energy is required that may increase the risk of retinal detachment[31].

CONCLUSION

In conclusion, our study shows that Cruciate shape capsulotomy with an opening of 3.5 mm or less provides the greatest improvement in visual function following Nd: YAG capsulotomy in patients who have had uncomplicated cataract extraction surgery.

REFERENCES
