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Abstract Background: Enzymes /ˈɛnzaɪmz/ are both proteins and biological catalysts (biocatalysts). Catalysts accelerate chemical 
reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into 
different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur 
at rates fast enough to sustain life. RNA- The chemically versatile molecule : of The information content of the cell is 
contained in DNA, which codes for proteins that carry out the majority of cellular functions. However, the discovery of 
catalytic RNA led to the RNA world hypothesis: at one point, RNA could have been both the information carrier and the 
functional molecule . It is necessary but not sufficient for the RNA world to be self-perpetuating: it must also have given 
rise to current biology featuring protein enzymes. The details of this transition are purely speculative, but it may have 
included the recruitment of amino acids or short peptides as enzymatic cofactors. Clearly, RNA is capable of specifically 
binding these ligands and could use them to assist in chemistry. Enzymes are generally globular proteins, acting alone or 
in larger complexes. The sequence of the amino acids specifies the structure which in turn determines the catalytic 
activity of the enzyme . Dynamics of Protein –Enzymes : These are not rigid, static structures; instead they have complex 
internal dynamic motions – that is, movements of parts of the enzyme's structure such as individual amino acid residues, 
groups of residues forming a protein loop or unit of secondary structure, or even an entire protein domain. Types of 
inhibition-Competitive, Non-competitive, Uncompetitive, Mixed, Irreversible. Conclusion: Only two reactions are 
observed to be catalysed by RNA in nature. However, the diversity of catalytic mechanisms for these reactions implies 
that RNA may be capable of much more. This is supported by the success of in vitro selection to develop ribozymes for 
RNA ligation. 
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INTRODUCTION 
Enzymes /ˈɛnzaɪmz/ are both proteins and biological 
catalysts (biocatalysts). Catalysts accelerate chemical 
reactions. The molecules upon which enzymes may act 
are called substrates, and the enzyme converts the 

substrates into different molecules known as products. 
Almost all metabolic processes in the cell need enzyme 
catalysis in order to occur at rates fast enough to sustain 
life.1:8.1 Metabolic pathways depend upon enzymes to 
catalyze individual steps. The study of enzymes is called 
enzymology and a new field of pseudoenzyme analysis 
has recently grown up, recognising that during evolution, 
some enzymes have lost the ability to carry out biological 
catalysis, which is often reflected in their amino acid 
sequences and unusual 'pseudocatalytic' properties.2,3 
Enzymes are known to catalyze more than 5,000 
biochemical reaction types.4 Other biocatalysts are 
catalytic RNA molecules, called ribozymes. Enzymes' 
specificity comes from their unique three-dimensional 
structures. Like all catalysts, enzymes increase the 
reaction rate by lowering its activation energy. Some 
enzymes can make their conversion of substrate to 
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product occur many millions of times faster. An extreme 
example is orotidine 5'-phosphate decarboxylase, which 
allows a reaction that would otherwise take millions of 
years to occur in milliseconds.5,6 RNA- The chemically 
versatile molecule : of The information content of the cell 
is contained in DNA, which codes for proteins that carry 
out the majority of cellular functions. However, the 
discovery of catalytic RNA led to the RNA world 
hypothesis: at one point, RNA could have been both the 
information carrier and the functional molecule 7. At first 
the main function would be self-replication, but as more 
complex RNAs evolved, they would need to synthesize 
their precursors, store and use energy, and isolate their 
reaction products from the environment. Eventually, 
RNA would have to transition towards modern biology, 
where proteins play most of the catalytic roles. This 
would involve the increasingly complex task of message-
directed protein synthesis, including the specific 
activation of amino acids to be incorporated. It is now 
known that natural ribozymes use a variety of catalytic 
mechanisms, even for phosphoryl transfer. Furthermore, 
RNA regulatory elements, called riboswitches, have been 
shown to bind a variety of cofactors, small molecules 
which expand the repertoire of modern protein enzymes. 
In addition to phosphoryl transfer ribozymes, the RNA 
component of the ribosome is responsible for catalysing 
protein synthesis. This is the key reaction required to 
transition from RNA to protein as functional molecule. 
These observations indicate the versatility of RNA in 
catalysing chemical reactions, an essential characteristic 
for the RNA world. The RNA components of other 
phosphoryl transfer enzymes—RNase P and the 
spliceosome—also bind divalent metal ions important for 
catalysis 8,9. Clearly, RNA is suited for recruiting divalent 
metal ions, which can be used for a variety of catalytic 
roles. The large ribozymes are all metalloenzymes, but 
surprisingly, the hairpin, Varkud Satellite (VS) and 
hammerhead ribozymes are active in the absence of 
divalent metal ions 10. Each of these ribozymes, along 
with the hepatitis delta virus ribozyme (HDV), catalyse 
self-cleavage and ligation reactions as part of processing 
genome replicants. The hammerhead ribozyme is perhaps 
the most extensively studied small ribozyme, and the 
wealth of biochemical and structural data support a 
catalytic mechanism dependent on RNA functional 
groups. Although early crystal structures of a minimal 
hammerhead construct conflicted with biochemical data, 
this has been reconciled by the structure of a full-length, 
fully active construct.11 This appears to be a common 
strategy for the small ribozymes. These experiments 
implicate nucleobases in acid–base catalysis for the 
hairpin, HDV and VS ribozymes 13,14. This is unexpected 
because no RNA functional groups have unperturbed 

pKas near neutrality. It is possible that some of these 
bases are participating in hydrogen bonds instead of full 
acid–base catalysis. Alternatively, the bases could be 
functioning as alternate tautomers, especially for guanine, 
which has been repeatedly observed in position for acid–
base catalysis 13. Metal ions may also play an indirect role 
in altering the pKa of a nucleobase so it may act as a 
general acid or base 14,15,16,17,18,19. Protein enzymes 
commonly have pKa shifts of several units; it appears that 
RNA is capable of the same. A third strategy for catalysis 
is demonstrated by the glmS riboswitch. In response to 
high concentrations of glucosamine-6-phosphate, this 
riboswitch catalyses its own cleavage, which results in 
subsequent nuclease degradation of the mRNA. The pKas 
of glucosamine-6-phosphate and several analogues track 
closely to the observed reaction pKas of the ribozyme, 
suggesting a direct role in catalysis.17 Glucosamine6-
phosphate binds in the active site, in position to donate an 
amino proton to the leaving group.20 It is also possible 
that the positively charged amino group stabilizes the 
negatively charged transition state. In either case, 
recruitment of a small molecule cofactor expands the 
functional groups available for catalysis. Aided by this 
cofactor, glmS can reach rates as high as 5s 2118 
PROTEIN SYNTHESIS and RNA: It is necessary but 
not sufficient for the RNA world to be self-perpetuating: 
it must also have given rise to current biology featuring 
protein enzymes. The details of this transition are purely 
speculative, but it may have included the recruitment of 
amino acids or short peptides as enzymatic cofactors. 
Clearly, RNA is capable of specifically binding these 
ligands and could use them to assist in chemistry. 
Interestingly, many of the cofactors discussed above 
contain a nucleic acid element 20, suggesting that 
molecules like them may have been selected in part for 
their ability to bind to RNA. As peptides became more 
complex, the chances of encountering them randomly in 
solution would drop precipitously, and machinery for 
specifically synthesizing them would have to be 
developed. Eventually, this could become the mechanism 
for protein synthesis. Since the machinery for making 
proteins would have to predate proteins, the RNA world 
hypothesis predicts such machinery would be made of 
RNA. In all extant organisms, protein synthesis is carried 
out by a large nucleoprotein complex, the ribosome. 
Strikingly, the active site for peptide bond formation is 
composed entirely of RNA 21, 22. This is possibly the 
single most significant piece of data supporting the RNA 
world hypothesis. The ribosome manufactures proteins by 
linking individual amino acids through peptide bonds . As 
in phosphoryl transfer, this reaction may be catalysed by 
deprotonating the nucleophile, protonating the leaving 
group and stabilizing build-up of charge in the transition 
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state. Substrate positioning is expected to play a large 
role, as it does for all bimolecular reactions. It is 
unknown (and perhaps unknowable) what a more 
primitive ribosome looked like, and at what point 
aminoacyl adenylates were used as substrates. Although a 
small ribozyme has been developed by in vitro selection 
which can form a peptide bond between two aminoacyl 
adenylates 23, message-directed synthesis requires a more 
complex system with decoding abilities. Nevertheless, the 
modern ribosome is a vivid demonstration that RNA has 
the catalytic properties necessary to begin protein 
synthesis. A fundamental task of proteins is to act as 
enzymes—catalysts that increase the rate of virtually all 
the chemical reactions within cells. Although RNAs are 
capable of catalyzing some reactions, most biological 
reactions are catalyzed by proteins. In the absence of 
enzymatic catalysis, most biochemical reactions are so 
slow that they would not occur under the mild conditions 
of temperature and pressure that are compatible with life. 
Enzymes accelerate the rates of such reactions by well 
over a million-fold, so reactions that would take years in 
the absence of catalysis can occur in fractions of seconds 
if catalyzed by the appropriate enzyme. Cells contain 
thousands of different enzymes, and their activities 
determine which of the many possible chemical reactions 
actually take place within the cell 24. 
Properties and characteristics of protein as enzymes : 
Enzymes are generally globular proteins, acting alone or 
in larger complexes. The sequence of the amino acids 
specifies the structure which in turn determines the 
catalytic activity of the enzyme.25 Although structure 
determines function, a novel enzymatic activity cannot 
yet be predicted from structure alone.26 Enzyme 
structures unfold (denature) when heated or exposed to 
chemical denaturants and this disruption to the structure 
typically causes a loss of activity.27 Enzyme denaturation 
is normally linked to temperatures above a species' 
normal level; as a result, enzymes from bacteria living in 
volcanic environments such as hot springs are prized by 
industrial users for their ability to function at high 
temperatures, allowing enzyme-catalysed reactions to be 
operated at a very high rate. Enzymes are usually much 
larger than their substrates. Sizes range from just 62 
amino acid residues, for the monomer of 4-oxalocrotonate 
tautomerase,28 to over 2,500 residues in the animal fatty 
acid synthase.29 Only a small portion of their structure 
(around 2–4 amino acids) is directly involved in catalysis: 
the catalytic site.30 This catalytic site is located next to 
one or more binding sites where residues orient the 
substrates. The catalytic site and binding site together 
comprise the enzyme's active site. The remaining 
majority of the enzyme structure serves to maintain the 
precise orientation and dynamics of the active site.31 

Enzymes must bind their substrates before they can 
catalyse any chemical reaction. Enzymes are usually very 
specific as to what substrates they bind and then the 
chemical reaction catalysed. Specificity is achieved by 
binding pockets with complementary shape, charge and 
hydrophilic/hydrophobic characteristics to the substrates. 
Enzymes can therefore distinguish between very similar 
substrate molecules to be chemoselective, regioselective 
and stereospecific.32 Some of the enzymes showing the 
highest specificity and accuracy are involved in the 
copying and expression of the genome. Some of these 
enzymes have "proof-reading" mechanisms. Here, an 
enzyme such as DNA polymerase catalyzes a reaction in 
a first step and then checks that the product is correct in a 
second step.33 This two-step process results in average 
error rates of less than 1 error in 100 million reactions in 
high-fidelity mammalian polymerases. Similar 
proofreading mechanisms are also found in RNA 
polymerase,34 aminoacyl tRNA synthetases35 and 
ribosomes.36 To explain the observed specificity of 
enzymes, in 1894 Emil Fischer proposed that both the 
enzyme and the substrate possess specific complementary 
geometric shapes that fit exactly into one another.37 This 
is often referred to as "the lock and key" model.1:8.3.2 
This early model explains enzyme specificity, but fails to 
explain the stabilization of the transition state that 
enzymes achieve.38 In 1958, Daniel Koshland suggested a 
modification to the lock and key model: since enzymes 
are rather flexible structures, the active site is 
continuously reshaped by interactions with the substrate 
as the substrate interacts with the enzyme.39 As a result, 
the substrate does not simply bind to a rigid active site; 
the amino acid side-chains that make up the active site are 
molded into the precise positions that enable the enzyme 
to perform its catalytic function. In some cases, such as 
glycosidases, the substrate molecule also changes shape 
slightly as it enters the active site.40 The active site 
continues to change until the substrate is completely 
bound, at which point the final shape and charge 
distribution is determined.41 Induced fit may enhance the 
fidelity of molecular recognition in the presence of 
competition and noise via the conformational 
proofreading mechanism.42 
 Enzymes can accelerate reactions in several ways, all of 
which lower the activation energy (ΔG‡, Gibbs free 
energy)43 

1. By stabilizing the transition state: 
o Creating an environment with a charge 

distribution complementary to that of the 
transition state to lower its energy[44] 

2. By providing an alternative reaction pathway: 
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o Temporarily reacting with the substrate, forming 
a covalent intermediate to provide a lower energy 
transition state[45] 

3. By destabilising the substrate ground state: 
o oDistorting bound substrate(s) into their 

transition state form to reduce the energy 
required to reach the transition state46 

o By orienting the substrates into a productive 
arrangement to reduce the reaction entropy 
change47 (the contribution of this mechanism to 
catalysis is relatively small)48 

Enzymes may use several of these mechanisms 
simultaneously. For example, proteases such as trypsin 
perform covalent catalysis using a catalytic triad, stabilise 
charge build-up on the transition states using an oxyanion 
hole, complete hydrolysis using an oriented water 
substrate.49,50,51,52,53 
Dynamics: 
Enzymes are not rigid, static structures; instead they have 
complex internal dynamic motions – that is, movements 
of parts of the enzyme's structure such as individual 
amino acid residues, groups of residues forming a protein 
loop or unit of secondary structure, or even an entire 
protein domain. These motions give rise to a 
conformational ensemble of slightly different structures 
that interconvert with one another at equilibrium. 
Different states within this ensemble may be associated 
with different aspects of an enzyme's function. For 
example, different conformations of the enzyme 
dihydrofolate reductase are associated with the substrate 
binding, catalysis, cofactor release, and product release 
steps of the catalytic cycle,53 consistent with catalytic 
resonance theory.  
Types of inhibition 
Competitive 
A competitive inhibitor and substrate cannot bind to the 
enzyme at the same time.56 Often competitive inhibitors 
strongly resemble the real substrate of the enzyme. For 
example, the drug methotrexate is a competitive inhibitor 
of the enzyme dihydrofolate reductase, which catalyzes 
the reduction of dihydrofolate to tetrahydrofolate.54 The 
similarity between the structures of dihydrofolate and this 
drug are shown in the accompanying figure. This type of 
inhibition can be overcome with high substrate 
concentration. In some cases, the inhibitor can bind to a 
site other than the binding-site of the usual substrate and 
exert an allosteric effect to change the shape of the usual 
binding-site.57 
Non-competitive 
A non-competitive inhibitor binds to a site other than 
where the substrate binds. The substrate still binds with 
its usual affinity and hence Km remains the same. 
However the inhibitor reduces the catalytic efficiency of 

the enzyme so that Vmax is reduced. In contrast to 
competitive inhibition, non-competitive inhibition cannot 
be overcome with high substrate concentration.55,56–64 
Uncompetitive 
An uncompetitive inhibitor cannot bind to the free 
enzyme, only to the enzyme-substrate complex; hence, 
these types of inhibitors are most effective at high 
substrate concentration. In the presence of the inhibitor, 
the enzyme-substrate complex is inactive.55,64 This type 
of inhibition is rare.58 
Mixed 
A mixed inhibitor binds to an allosteric site and the 
binding of the substrate and the inhibitor affect each 
other. The enzyme's function is reduced but not 
eliminated when bound to the inhibitor. This type of 
inhibitor does not follow the Michaelis-Menten equation. 
62–64 
Irreversible 
An irreversible inhibitor permanently inactivates the 
enzyme, usually by forming a covalent bond to the 
protein.73 Penicillin74 and aspirin75 are common drugs that 
act in this manner. 
Functions of inhibitors 
In many organisms, inhibitors may act as part of a 
feedback mechanism. If an enzyme produces too much of 
one substance in the organism, that substance may act as 
an inhibitor for the enzyme at the beginning of the 
pathway that produces it, causing production of the 
substance to slow down or stop when there is sufficient 
amount. This is a form of negative feedback. Major 
metabolic pathways such as the citric acid cycle make use 
of this mechanism. Since inhibitors modulate the function 
of enzymes they are often used as drugs. Many such 
drugs are reversible competitive inhibitors that resemble 
the enzyme's native substrate, similar to methotrexate 
above; other well-known examples include statins used to 
treat high cholesterol,62 and protease inhibitors used to 
treat retroviral infections such as HIV.77 A common 
example of an irreversible inhibitor that is used as a drug 
is aspirin, which inhibits the COX-1 and COX-2 enzymes 
that produce the inflammation messenger prostaglandin.61 
Other enzyme inhibitors are poisons. For example, the 
poison cyanide is an irreversible enzyme inhibitor that 
combines with the copper and iron in the active site of the 
enzyme cytochrome c oxidase and blocks cellular 
respiration.64 
 
General characteristics Catalytic RNAs: are broadly 
separated into two classes based on their size and reaction 
mechanisms (reviewed by [65-69]). The large catalytic 
RNAs consist of RNase P, and the group I and group II 
introns. These molecules range in size from a few 
hundred nucleotides to around 3000. They catalyze 
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reactions that generate reaction intermediates and 
products with 3P hydroxyls and 5P phosphates . The 
small catalytic RNAs include the hammerhead, the 
hairpin (or paperclip), hepatitis delta and VS RNA. These 
molecules range in size from V35 to V155 nucleotides. 
They use the 2P hydroxyl of the ribose sugar as a 
nucleophile, and they generate products with a 2P,3P-
cyclic phosphate and a 5P hydroxyl . The relationship 
between the size and the reaction mechanism of these 
molecules has raised intriguing questions about their 
origins and evolution. It may be that the reaction 
mechanism and the size of the large ribozymes are needed 
to bring often very distal elements of the substrate into 
close proximity. The small, self-cleaving, RNAs are not 
faced with this constraint and perhaps this permitted them 
to evolve smaller catalytic centers. It remains possible, 
however, that the relationship between the size and 
reaction mechanism is simply fortuitous. With one 
exception, all these RNAs catalyze reactions that modify 
themselves. Hence, they cannot be considered true 
enzymes or catalysts. The exception is RNase P, which 
processes the 5P end of tRNA precursors. It is the only 
known example of a naturally occurring RNA-based 
enzyme. However, all these molecules can be converted, 
with some clever engineering, into true RNA enzymes 
that modify other RNAs in trans without becoming 
altered themselves. Ribozymes increase reaction rates by 
up to 1011- fold and have reaction e¤ciencies, kcat/Km, 
up to 108 M31 min31, which is in the range for di¡usion-
controlled duplex formation between oligonucleotides 65. 
While impressive, the rate enhancements provided by 
ribozymes are still V103-fold less than those provided by 
protein enzymes catalyzing comparable reactions 70. 
Moreover, ribozymes cannot compare with proteins as 
multiple-turnover enzymes, mostly because product 
release is so slow that the catalytic site of the ribozyme is 
easily saturated. This may be an inherent limitation of 
RNA enzymes, but it could also re£ect evolutionary 
constraints, since ribozymes generally catalyze 
intramolecular, single-turnover, reactions in nature. An 
exhaustive comparison of the enzymatic mechanistics of 
protein and RNA enzymes has recently been made 70. All 
known ribozymes have an absolute requirement for a 
divalent cation, which is generally Mg2 . Some, notably 
within the large catalytic RNAs, require divalent cations 
for proper assembly of the tertiary structures as well. On 
this basis, catalytic RNAs are considered to be 
metalloenzymes, and a general two-metal-ion reaction 
mechanism has been proposed for the large catalytic 
RNAs, based on analogy with the properties of protein 
metalloenzymes 71.  
 
CONCLUSION   

Only two reactions are observed to be catalysed by RNA 
in nature. However, the diversity of catalytic mechanisms 
for these reactions implies that RNA may be capable of 
much more. This is supported by the success of in vitro 
selection to develop ribozymes for RNA ligation 72, 
carbon–carbon bond formation 73, glycosidic bond 
formation 74and other activities. Furthermore, in vitro-
selected ribozymes can use catalytic cofactors, 
demonstrated by an alcohol dehydrogenase 75. If the RNA 
world hypothesis is correct, then almost all ribozymes 
have been replaced by protein counterparts. Why then do 
some ribozymes persist in the presence of proteins, while 
others do not? First, the lower reaction rate could be 
compensated for by the increased effective concentration, 
since most ribozymes exist in nature as cis-acting 
elements, and not true trans-acting enzymes. In fact, the 
deficiency of many ribozymes compared with protein 
enzymes is not in the catalytic rate, but in binding the 
engineered substrate. Further, some ribozymes are mobile 
genetic elements, which benefit from requiring as little 
exogenous protein as possible (and, in fact, introns often 
contain their own open reading frames) 76. 
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